John Maynard Keynes and Ludwig von Mises on Probability


  • Ludwig van den Hauwe Ludwig van den Hauwe received his Ph.D. from the Université Paris-Dauphine.



The economic paradigms of Ludwig von Mises on the one hand and of John Maynard Keynes on the other have been correctly recognized as antithetical at the theoretical level, and as antagonistic with respect to their practical and public policy implications. Characteristically they have also been vindicated by opposing sides of the political spectrum. Nevertheless the respective views of these authors with respect to the meaning and interpretation of probability exhibit a closer conceptual affinity than has been acknowledged in the literature. In particular it is argued that in some relevant respects Ludwig von Mises’ interpretation of the concept of probability exhibits a closer affinity with the interpretation of probability developed by his opponent John Maynard Keynes than with the views on probability espoused by his brother Richard von Mises. Nevertheless there also exist significant differences between the views of Ludwig von Mises and those of John Maynard Keynes with respect to probability. One of these is highlighted more particularly: where John Maynard Keynes advocated a monist view of probability, Ludwig von Mises embraced a dualist view of probability, according to which the concept of probability has two different meanings each of which is valid in a particular area or context. It is concluded that both John Maynard Keynes and Ludwig von Mises presented highly nuanced views with respect to the meaning and interpretation of probability.

JEL codes: B00; B40; B49; B53; C00.

Key words: General Methodology; Austrian Methodology; Keynesian Methodology; Quantitative and Qualitative Probability Concepts: Meaning and Interpretation; Frequency Interpretation; Logical Interpretation; John Maynard Keynes; Ludwig von Mises; Richard von Mises.

Resumen: Los paradigmas económicos de Ludwig von Mises por una parte, y de John Maynard Keynes por otra, han sido correctamente reconocidos como contradictorias a nivel teórico, y como antagonistas, con respecto a sus implicaciones políticas prácticas y públicas. Aún así, las respectivas visiones de estos autores con respecto al significado e interpretación de la probabilidad, muestra una afinidad conceptual más estrecha que los que se ha reconocido en la literatura. Se ha argumentado especialmente que en algunos aspectos importantes, la interpretación de Ludwig von Mises del concepto de probabilidad, muestra una más estrecha afinidad con la interpretación de probabilidad desarrollada por su oponente John Maynard Keynes, que con las maneras de ver la probabilidad respaldadas por su hermano Richard von Mises. Sin embargo, también existen grandes diferencias entre los puntos de vista de Ludwig von Mises y aquellos de John Maynard Keynes con respecto a la probabilidad. Uno de ellos destaca principalmente: cuando John Maynard Keynes aboga por un punto de vista monista de la probabilidad, Ludwig von Mises defiende un punto de vista dualista de la probabilidad, de acuerdo con el cual el concepto de probabilidad recibe dos significados diferentes, y en donde cada uno de ellos es válido en un área o contexto en particular. Se concluye que tanto John Maynard Keynes como Ludwig von Mises presentan puntos de vista claramente diferenciados con respecto al significado e interpretación de la probabilidad.

Códigos JEL: B00; B40; B49; B53; C00.

Palabras clave: Metodología General; Metodología austríaca; Metodología Keynesiana; Conceptos de probabilidad cuantitativos y cualitativos: Significado e Interpretación; Interpretación frecuencialista; Interpretación lógica; John Maynard Keynes; Ludwig von Mises; Richard von Mises.


ADAMS, W.J., (1974), The Life and Times of the Central Limit Theorem, New York: Kaedmon Publishing.

BAGGOTT, J., (2004), Beyond Measure – Modern Physics, Philosophy and the Meaning of Quantum Theory, Oxford University Press.

BOHR, N., (1949), «Discussion with Einstein on epistemological problems in atomic physics», in: Schilpp P.A. (Ed.) Albert Einstein: Philosopher-scientist, pp. 199-241.

CARNAP, R., (1945), «The Two Concepts of Probability», Philosophy and Phenomenological Research, 5, 513-532.

FINE, A., (1986), The Shaky Game – Einstein, Realism and the Quantum Theory, The University of Chicago Press.

FRAASSEN, Bas C. van (1991), Quantum Mechanics: An Empiricist View, Oxford.

GALAVOTTI, M.C., (1995), «Operationism, Probability and Quantum Mechanics», Foundations of Science, 1: 99-118.

GILLIES, D., (1973), An Objective Theory of Probability, London: Methuen & Co.

— (2000), Philosophical Theories of Probability, London: Routledge. GNEDENKO, B.V., (2005 [1962]), Theory of Probability, translation from Russian by B.D. Seckler, New York: AMS Chelsea Publishing.

HEISENBERG, W., (1990 [1958]), Physics and Philosophy, London: Penguin Books.

HICKS, J., (1979), Causality in Economics, New York: Basic Books. HOPPE, H.-H., (1922), «The Misesian Case against Keynes», Chapter 12 in: Dissent on Keynes – A Critical Appraisal of Keynesian Economics, Ed. by Mark Skousen, New York: Praeger, 199-223.

—(2006), «The Limits of Numerical Probability: Frank H. Knight and Ludwig von Mises and the Frequency Interpretation», Procesos de Mercado – Revista Europea de Economía Política, Volumen III, Número 2, 11-38.

HOWSON, C. and URBACH, P., (2006), Scientific Reasoning – The Bayesian Approach, La Salle: Open Court Publishing.

HUGHES, R.I.G., (1992), The Structure and Interpretation of Quantum Mechanics, London: Harvard University Press.

JAYNES, E.T., (2003), Probability Theory – The Logic of Science, Cambridge: Cambridge University Press.

KEYNES, J.M., (2004 [1921]), A Treatise on Probability, New York: Dover Publications.

—(1997 [1936]), The General Theory of Employment, Interest, and Money, Amherst: Prometheus Books.

KHRENNIKOV, A., (1999), Interpretations of Probability, Utrecht.

LAD, F., (1983), «The construction of probability theory», Science and Society, Volume 47, 285-99.

MISES, L. VON (1998), Human Action, Auburn: Ludwig von Mises Institute.

—(1969 [1957]), Theory and History – An Interpretation of Social and Economic Evolution, Westport: Arlington House Publishers.

—(1978 [1962]), The Ultimate Foundation of Economic Science, Kansas: Sheed Andrews and McMeel.

MISES, R. VON (1951), Positivism – A Study in Human Understanding, New York: Dover Publications.

—(1964), Mathematical Theory of Probability and Statistics, New York: Academic Press.

—(1981 [1957]), Probability, Statistics and Truth, New York: Dover Publications.

POPPER, K.R., (1982), Quantum Theory and the Schism in Physics, London: Hutchinson.

— (1983), Realism and the Aim of Science, London: Hutchinson. RAMSEY, F.P., (1988), «Truth and Probability», in P. Gärdenfors and N.-E. SAHLIN (eds.), Decision, probability, and utility: Selected readings, Cambridge: Cambridge University Press, pp. 19-47. Reprinted from R.B. Braithwaite (ed.), The Foundations of Mathematics, London: Routledge and Kegan Paul, 1931, pp. 156-198.

ROTHBARD, M.N., (1995), Making Economic Sense, Auburn: Ludwig von Mises Institute.

—(1997), The Logic of Action I: Method, Money, and the Austrian School, Cheltenham: Edward Elgar.

—(2004), Man, Economy, and State – The Scholar«s Edition, Auburn: Ludwig von Mises Institute.

RUNDE, J., (1994), «Keynes After Ramsey – In Defence of A Treatise on Probability», Studies in History and Philosophy of Science 25(1), 97-121.

STEELE, D.R., (2000), Review of Justin Raimondo – An Enemy of the State: The Life of Murray N. Rothbard (Prometheus Books, 2000), 400 pp., First Published in Liberty, November 2000, downloaded version.




How to Cite

Hauwe, L. van den . (2008). John Maynard Keynes and Ludwig von Mises on Probability. REVISTA PROCESOS DE MERCADO, 5(1), 11–50.